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Quadrupolar interaction in nematic liquid crystals
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In this paper we show that the screened quadrupolar interaction among liquid crystal molecules cannot give
rise to the nematic phase. This result follows from the fact that the associated splay and bend elastic constants
appearing in the elastic energy density are negative. The elastic energy density is evaluated by supposing that
the interaction volume has spherical shape, whose inner excluded part coincides with the molecular volume. A
generalization of our model to interaction volume of ellipsoidal shape is also discussed. In both cases the total
elastic energy for splay-bend deformations is negative, indicating that the molecules have no tendency to align
along a common direction, as required by a nematic pH&€63-651X96)05209-9

PACS numbdps): 61.30.Gd, 61.30.Cz

Nematic liquid crystal§¥NLCs) are ferroelectric quadru- ing length introduced to take into account the short-range
polar material§1]. This means that they possess an electricalntermolecular forces responsible for the elastic properties of
guadrupolar moment, even in the absence of an external elethe NLC. Note that forh — the quadrupolar potential is
tric field. The electrostatic description of these media hadong-ranged. As is well knowf®], an elastic theory may be
been recently discussd@]. In this paper we evaluate the formulated only for intermolecular forces of short interaction
elastic constants for a NL{3] by assuming that the quadru- range. In this context, short means very small with respect to
polar interaction is the only one existing among the mol-the scale over which the spatial variation of the macroscopic
ecules. We shall show that this kind of intermolecular inter-order takes place. Hence, the casenef» is expected to
action does not favor the NLC phase. This conclusion holdgive unusual results, as stressed a few yeard4gé-or this
in the hypothesis that the interaction volume has a sphericakason we shall consider in the followingto be of the order
or ellipsoidal shape, whose inner excluded volume coincidesf a few molecular sizes, in order to evaluate the elastic
with that of the molecul¢4-6]. constants of a material whose intermolecular energy has a

Let us consider a NLC material whose molecules possesguadrupolar symmetry. In Eq1l) and henceforth, Einstein’s
an electrical quadrupole moment of elemeld{s. As is well ~ summation convention is assumed. The electrostatic energy
known [1], the electric quadrupolar moment is proportional of D’ in the external field due t® is [8]
to the tensorial order parameter, of elemenfg]

Qij=(3/12)F nin; — (1/3)6;;], whereS is the scalar order pa- , , PV

rameter anah is the NLC directorn is the statistical average 9(D.D5r =Dy XX )

of the major axis of moleculea, whereasS is defined by

S=(3/2)((n.a)?— (1/3)), where(- - -) means statistical av- f D’=D+AD, whereAD; are small quantities with respect
erage. The scalar order paramegeis connected with the 0 Dij, EQ.(2) can be expanded to second ordeniD;; as

fluctuations ofa aroundn. In the following we suppose a follows [10]:

perfect nematic order, henge=a. Consequently we shall ) 1
assume that the particle-particle distribution function is not g(D,D’;r)=go+ LijADijJrEKinAD”ADk,, 3
altered by the quadrupolar interaction under consideration.

Let us focus our attention on the case in which a molecule ) ) ,
. .= where the interaction energy for the undeformed state is
of quadrupolar momenD is located inR and another one

with quadrupolar momer®’ is in R’ =R+r, wherer is the g:;/f?r?eg)ggo:g(lj” ,Dij 1), and the tensoré andK are

relative position ofD’ with respect toD. The electric qua-

drupolar momenD creates iR’ the electric potentig8] ag 2V
Lij I(—,) =
N Xin S aDlj D=D; (9Xi(9Xj
V(r)=Djj5=se "™, 1)
2r
and
wherex; are the Cartesian componentsfofand)\ a screen- #g
Kijki :(,—,) =0. 4
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tadual de MaringaAvenida Colombo 3690, 87020-900 Maringa Consequently, to the second orderAl;; , the interaction
ParanaBrazil. energy is found to be
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2V Let us analyze now the elastic tensor of elemeMjs,,,
———AD . (5)  given by Eq.(11). By substituting Eq(1) into Eq.(11), after
A simple calculations we obtain
By supposing thaD changes slowly over the range of the 1
quadrupolgr interaction., it is possible to expandD in Naﬁ/w:Z‘Dij[A(ﬁialﬂvﬁj'i_ﬁjal/wBi_5B,u|aijv
power series ok; in the usual way,

D 1( ¢?°D ~ Ouplaij ) ~(BA+A%) I ygijal T 2(8pu0,0a
AD 5= 2| x,+ 5|2 (6)
BN ax, ot 2\ ax,ox, ) g M
+5V35M)f vdr;, (12
It follows that the interaction energy betweBnandD’, N
in the limit of small distortion, is where
D 1({ 9°D PV A=e Ro/A_g=Ri/A
_ aB - ap e e
9= ( ax )QX’DL 2(&x ﬁxy) XX IXGIXg"
"R g R and
(7)
A* =(Ry/\)e RoA— (R /N )e Rilh (13

The elastic energy density, in the mean field approxima-

tion, is obtained by integrating (1/2)gy) over the inter- ;
action volumery of the intermolecular forcefl0]. Hence ggﬁﬁgg 83 the screening lengthand the tensorsandJ are

i drep . PPas 1 9°D o
=3), (079007 = Mg " N o = [ w0
tS)
where and
1 Y% Ji: =f U Ui Uy U U U, dQ (14)
[ ijlmno iYjiYr¥mYnto '
Magu ZfTNX“&xa&deT am
and whereu=r/r and dQ =singdad¢ is the element of a solid
angle in a Cartesian reference frame in whicis coincident
1 Y, with the polar angle. Evidently, the tensdrsand J are by
Naﬁwzi TNXMXV X X g dr. ©  definition symmetric with respect to all the indices. Note that

for A\ —oo, corresponding to the nonscreened potentiagdnd

The tensorsM and N, whose symmetries are apparent, A* tend to zero. This limit, however, is not interesting in the

play the role of elastic tensors. Simple calculations give ~ Present context. For finite values it is possible to perform
the limit R,—. In this caseA and A* are two negative
Vv guantities given by

1

A=—e RN and A*=—(R;/N)e R™ (15

and A simple analysis shows that the contribution to the elastic
1 tensorN of the integral overy of Eq.(12) is identically zero
_ _ whenV has quadrupolar symmetry. In fact, taking into ac-
NQB#V_EJ XMXVWNB V(5B#X,,+ 5VBX/.L)NC¥ dz q . p y y g
b a count the expressiofl) for V, one gets

1 2
+§(5ﬁ#5av+ 5vﬁ5ﬂa)f VdT1 (11) f Vdr= ?E(Rl ,Ro)Dmnﬁmn=0, (16)
™ ™

whereX=3;+%,, andX; andZ, are the inner and outer whereE(R,R,) is the exponential integral defined by
surfaces limiting the interaction volumeg,. In Egs.(10) and

(11) N is the geometrical normal t&, directed outwards. (R0 _,,dr

The surfacest; and X, are similar and hence for corre- E(R ’Ro)_JRi e T (17)
sponding points\'= — N°.

A simple analysis shows that for quadrupolar symmetryln the limit A —, E(R;,R,)—In(R,/R), but this logarith-
M=0. In fact, in the bulkM .z, has to be decomposed in mic divergence can be neglected in our analysis, because
terms ofD,, and of 5,5, according to general rulgd1].  whenk— long-ranged forces arise, as previously stated. In
But this decomposition is impossible for a tensor of thirdthis situation it is impossible to write down an elastic energy
order. density of the type of E(8), having a local character. How-
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ever, it should be stressed that the bulk term given by EqThe elastic constants in E(R2) are given by
(16) does not contribute to the tensirfor reasons of sym-

metry. 4
The tensord andJ can be decomposed in terms of the Ky;=kgg==—=mD?(8A +3A*),
unit tensor of elements;; . Simple calculations give 105
4 4 2 *
|ij|m:l—577(5ij Oimt 61 Ojm+ Simd;1) (18 kzzz_ﬁWD (2A—A™),
and
o 4 D25A+A*
137 705" 3
4
Jijlmnozﬁ'ﬂ[ 5ij(5lm5no+ 5In5mo+ 5I05mn) + 5i|(5jm5no
(Kot ko) 2 D24A+13A* 23
= — =TT — .
+ 8jnSmot SjoOmn) + Sim( 81 Snot 8ot Sjndio) 2 7 105 3
+ 6in(5j1 Smot SjmSio T 6jo Oim) + Sio( 6j1 Omn Equations(23) show that in the limit\— o, corresponding
+ 8Bt BinBim) . (19) to the nonscreened quadrupolar potential, all the elastic con-

stants vanisli10], but this case is out of our analysis. When

By substituting Eqs(16), (18), and Eq.(19) into Eq.(12) we \ is a finite quantity, the limiR,— o may be performed. In

obtain the elastic tensd¥ expressed in terms of the elements this situationky,(=ksg) is a negative quantity. This means
of symmetry of the NLCD;;, and of the unit tensor, of that the ground state of the phase is not the undistorted state,

elementss;; . Inserting this expression fa into Eq. (8), _but the distorted one. In other words, th_e molecules interact-

and taking into account the quadrupolar symmeity=0, ing via a screened quad_rup(_)lar potential do not tend to be

one obtains, after some calculations, parallel to a common direction. These results have beeen
obtained by assuming an interaction volume limited by two
spherical surfaces of radi, (>R;) andR; for the outer and

o D .. oD the inner surface, respectively. This is equivalent to assum-
F=-— 1—05[ (2A—A*)aTaB %—4(5A+A*) ing the excluded volume of spherical shape, and the electri-
s © cal quadrupole responsible for the interaction localized in the

" dDap dDg, 9 ( aDaﬁ)

center. This approximation is widely used in the molecular
X X, X\ PR ax, |

(20 models proposed to evaluate the NLC elastic constants
[4,11-13. For\—x, it is possible to show that all the elas-
tic constants are zero also under the hypothesis that the in-

g teraction volume is limited by two similar surfaces of ellip-

soidal shape, a quite reasonable assumption. However, this

case is not physically relevant because in an elastic theory
only intermolecular forces of negligible interaction range can
be considered. For finitd and an ellipsoidal shape of the
interaction volume the calculations are more complex. In this
case, the tensors and J appearing in Eq(12) have to be
9D op 9D o 9D o decomposed in terms of the unit tensor andDofit follows
B - o, ax that these tensors are no longer simply given by E#8)
(e v m 21) and(19), because now also terms of the typgD,,, and of
the typeDj; d, have to be considered. However, the main

In order to write Eq.(20) in a form containing the NLC results do not change, as shown by a numerical andlyd]s

director only[12,13, one has to remember thex has the ~In this paper we have considered molecules interacting

symmetry of Q, the NLC tensor order parameter. Hence,Via @ quadrupolar force, either in the presence or in the ab-

D;;=D[n;n;—(1/3)8;;], whereD is a scalar quantity, posi- S€nce of screening effects. Expressions for the elastic energy
tive for cigarlike molecules and negative for disklike mol- density and for the elastic constants connected to this inter-

molecular interaction have been obtained in the continuum
approximation. In the case of nonscreened quadrupolar po-
tential, all the elastic constants have been shown to be iden-
tically zero, whereas for finita the splay and bend elastic
1 constants are found to be negative. In both cases the mol-
F= —[kll(divﬁ)2+ kzz(ﬁ- rotﬁ)2+ k33(ﬁ>< rotﬁ)z] ecules do not tend to be oriented along a common direction,
2 as required by the nematic phase. As a consequence, even if
s - T - the NLC can be considered as quadrupolar ferroelectric ma-
*kygdiv(ndivn) + (ko kzg)div(ndivn +nxromn). terials, the quadrupole—quadrupgle intel?action does not favor
(220  the nematic phase. These results have been obtained by sup-

o

where the first term on the right-hand side of ERO) is
related to the tensol, whereas the second and the thir
contributions are related to the tensbisee Eq.(12)]. In
order to obtain Eq(20) we have taken into account the fol-
lowing equations, deriving from the condition
D,pD,p=const:

D,
Daﬁ—ﬁ=0 and D
X,

ecules, andh is the NLC director 0;n;=1). By substituting
this expression foD;; into Eq. (20), one gets
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posing the interaction volume to be limited by two spherical Many thanks are due to S. FaefRisa, G. Durand(Or-
surfaces of inner radiu®k; and outer radiusR, (>R;). say, P. Galatola, and P. AlligTorino) for useful discus-
However, the present conclusions hold also in the case of agions. One of usL.R.E) acknowledges the financial support

interaction volume having ellipsoidal shape. of INFM (Italy) and CNPq(Brazil).
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