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In this paper we show that the screened quadrupolar interaction among liquid crystal molecules cannot give
rise to the nematic phase. This result follows from the fact that the associated splay and bend elastic constants
appearing in the elastic energy density are negative. The elastic energy density is evaluated by supposing that
the interaction volume has spherical shape, whose inner excluded part coincides with the molecular volume. A
generalization of our model to interaction volume of ellipsoidal shape is also discussed. In both cases the total
elastic energy for splay-bend deformations is negative, indicating that the molecules have no tendency to align
along a common direction, as required by a nematic phase.@S1063-651X~96!05209-9#

PACS number~s!: 61.30.Gd, 61.30.Cz

Nematic liquid crystals~NLCs! are ferroelectric quadru-
polar materials@1#. This means that they possess an electrical
quadrupolar moment, even in the absence of an external elec-
tric field. The electrostatic description of these media has
been recently discussed@2#. In this paper we evaluate the
elastic constants for a NLC@3# by assuming that the quadru-
polar interaction is the only one existing among the mol-
ecules. We shall show that this kind of intermolecular inter-
action does not favor the NLC phase. This conclusion holds
in the hypothesis that the interaction volume has a spherical
or ellipsoidal shape, whose inner excluded volume coincides
with that of the molecule@4–6#.

Let us consider a NLC material whose molecules possess
an electrical quadrupole moment of elementsDi j . As is well
known @1#, the electric quadrupolar moment is proportional
to the tensorial order parameter, of elements@7#
Qi j5(3/2)S@ninj2(1/3)d i j #, whereS is the scalar order pa-
rameter andnW is the NLC director.nW is the statistical average
of the major axis of moleculesaW , whereasS is defined by
S5(3/2)^(nW .aW )22(1/3)&, where^•••& means statistical av-
erage. The scalar order parameterS is connected with the
fluctuations ofaW aroundnW . In the following we suppose a
perfect nematic order, hencenW 5aW . Consequently we shall
assume that the particle-particle distribution function is not
altered by the quadrupolar interaction under consideration.

Let us focus our attention on the case in which a molecule
of quadrupolar momentD is located inRW and another one
with quadrupolar momentD8 is in R8W5RW 1rW, whererW is the
relative position ofD8 with respect toD. The electric qua-
drupolar momentD creates inR8W the electric potential@8#

V~rW !5Di j

xixj
2r 5

e2r /l, ~1!

wherexi are the Cartesian components ofrW, andl a screen-

ing length introduced to take into account the short-range
intermolecular forces responsible for the elastic properties of
the NLC. Note that forl→` the quadrupolar potential is
long-ranged. As is well known@9#, an elastic theory may be
formulated only for intermolecular forces of short interaction
range. In this context, short means very small with respect to
the scale over which the spatial variation of the macroscopic
order takes place. Hence, the case ofl→` is expected to
give unusual results, as stressed a few years ago@4#. For this
reason we shall consider in the followingl to be of the order
of a few molecular sizes, in order to evaluate the elastic
constants of a material whose intermolecular energy has a
quadrupolar symmetry. In Eq.~1! and henceforth, Einstein’s
summation convention is assumed. The electrostatic energy
of D8 in the external field due toD is @8#

g~D,D8;rW !5Dab8
]2V

]xa]xb
. ~2!

If D85D1DD, whereDDi j are small quantities with respect
to Di j , Eq. ~2! can be expanded to second order inDDi j as
follows @10#:

g~D,D8;rW !5g01Li jDDi j1
1

2
Ki jklDDi jDDkl , ~3!

where the interaction energy for the undeformed state is
given by g05g(Di j ,Di j ;rW), and the tensorsL and K are
defined by

Li j5S ]g

]Di j8
D
D5D8

5
]2V

]xi]xj

and

Ki jkl5S ]2g

]Di j8 ]Dkl8
D
D85D

50 . ~4!

Consequently, to the second order inDDi j , the interaction
energy is found to be
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g5g01
]2V

]xa]xb
DDab . ~5!

By supposing thatD changes slowly over the range of the
quadrupolar interactionl, it is possible to expandDD in
power series ofxi in the usual way,

DDab5S ]Dab

]xm
D
RW
xm1

1

2 S ]2Dab

]xm]xn
D
RW
xmxn . ~6!

It follows that the interaction energy betweenD andD8,
in the limit of small distortion, is

g5g01F S ]Dab

]xm
D
RW

xm1
1

2 S ]2Dab

]xm]xn
D
RW

xmxnG ]2V

]xa]xb
.

~7!

The elastic energy density, in the mean field approxima-
tion, is obtained by integrating (1/2)(g2g0) over the inter-
action volumetN of the intermolecular forces@10#. Hence

F5
1

2EtN

~g2g0!dt5Mabm

]Dab

]xm
1
1

2
Nabmn

]2Dab

]xm]xn
,

~8!

where

Mabm5
1

2EtN

xm

]2V

]xa]xb
dt

and

Nabmn5
1

2EtN

xmxn

]2V

]xa]xb
dt. ~9!

The tensorsM and N, whose symmetries are apparent,
play the role of elastic tensors. Simple calculations give

Mabm5
1

2ES
S xm

]V

]xa
Nb2dbmVNaDdS ~10!

and

Nabmn5
1

2ES
Fxmxn

]V

]xa
Nb2V~dbmxn1dnbxm!NaGdS

1
1

2
~dbmdan1dnbdma!E

tN

Vdt, ~11!

whereS5S i1So , andS i andSo are the inner and outer
surfaces limiting the interaction volumetN . In Eqs.~10! and
~11! NW is the geometrical normal toS, directed outwards.
The surfacesS i and So are similar and hence for corre-
sponding pointsNW i52NW o.

A simple analysis shows that for quadrupolar symmetry
M[0. In fact, in the bulkMabm has to be decomposed in
terms ofDab and of dab , according to general rules@11#.
But this decomposition is impossible for a tensor of third
order.

Let us analyze now the elastic tensor of elementsNabmn

given by Eq.~11!. By substituting Eq.~1! into Eq.~11!, after
simple calculations we obtain

Nabmn5
1

4 HDi j @D~d iaImnb j1d jaImnb i2dbmI a i j n

2dnbI a i j m!2~5D1D* !Jmnb i j a#12~dbmdna

1dnbdma!E
tN

VdtJ , ~12!

where

D5e2Ro /l2e2Ri /l

and

D*5~Ro /l!e2Ro /l2~Ri /l!e2Ri /l ~13!

depend on the screening lengthl, and the tensorsI andJ are
defined by

I i j lm5E
4p
uiujulumdV

and

Ji j lmno5E
4p
uiujulumunuodV, ~14!

whereuW 5rW/r anddV5sinududf is the element of a solid
angle in a Cartesian reference frame in whichnW is coincident
with the polar angle. Evidently, the tensorsI and J are by
definition symmetric with respect to all the indices. Note that
for l→`, corresponding to the nonscreened potential,D and
D* tend to zero. This limit, however, is not interesting in the
present context. For finitel values it is possible to perform
the limit Ro→`. In this case,D andD* are two negative
quantities given by

D52e2Ri /l and D*52~Ri /l!e2Ri /l. ~15!

A simple analysis shows that the contribution to the elastic
tensorN of the integral overtN of Eq. ~12! is identically zero
whenV has quadrupolar symmetry. In fact, taking into ac-
count the expression~1! for V, one gets

E
tN

Vdt5
2p

3
E~Ri ,Ro!Dmndmn50, ~16!

whereE(Ri ,Ro) is the exponential integral defined by

E~Ri ,Ro!5E
Ri

Ro
e2r /l

dr

r
. ~17!

In the limit l→`, E(Ri ,Ro)→ ln(Ro /Ri), but this logarith-
mic divergence can be neglected in our analysis, because
whenl→` long-ranged forces arise, as previously stated. In
this situation it is impossible to write down an elastic energy
density of the type of Eq.~8!, having a local character. How-
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ever, it should be stressed that the bulk term given by Eq.
~16! does not contribute to the tensorN for reasons of sym-
metry.

The tensorsI and J can be decomposed in terms of the
unit tensor of elementsd i j . Simple calculations give

I i j lm5
4

15
p~d i jd lm1d i ld jm1d imd j l ! ~18!

and

Ji j lmno5
4

105
p@d i j ~d lmdno1d lndmo1d lodmn!1d i l ~d jmdno

1d jndmo1d jodmn!1d im~d j ldno1d jod ln1d jnd lo!

1d in~d j ldmo1d jmd lo1d jod lm!1d io~d j ldmn

1d jmd ln1d jnd lm!#. ~19!

By substituting Eqs.~16!, ~18!, and Eq.~19! into Eq.~12! we
obtain the elastic tensorN expressed in terms of the elements
of symmetry of the NLC,Di j , and of the unit tensor, of
elementsd i j . Inserting this expression forN into Eq. ~8!,
and taking into account the quadrupolar symmetryM[0,
one obtains, after some calculations,

F52
p

105H ~2D2D* !
]Dab

]xm

]Dab

]xm
24~5D1D* !

3F]Dab

]xa

]Dbm

]xm
2

]

]xm
SDbm

]Dab

]xa
D G J , ~20!

where the first term on the right-hand side of Eq.~20! is
related to the tensorI , whereas the second and the third
contributions are related to the tensorJ @see Eq.~12!#. In
order to obtain Eq.~20! we have taken into account the fol-
lowing equations, deriving from the condition
DabDab5const:

Dab

]Dab

]xm
50 and Dab

]2Dab

]xm]xn
52

]Dab

]xn

]Dab

]xm
.

~21!

In order to write Eq.~20! in a form containing the NLC
director only @12,13#, one has to remember thatD has the
symmetry ofQ, the NLC tensor order parameter. Hence,
Di j5D@ninj2(1/3)d i j #, whereD is a scalar quantity, posi-
tive for cigarlike molecules and negative for disklike mol-
ecules, andnW is the NLC director (nini51). By substituting
this expression forDi j into Eq. ~20!, one gets

F5
1

2
@k11~divnW !21k22~nW •rotnW !21k33~nW 3rotnW !2#

1k13div~nWdivnW !1~k221k24!div~nWdivnW 1nW 3rotnW !.

~22!

The elastic constants in Eq.~22! are given by

k115k335
4

105
pD2~8D13D* !,

k2252
4

105
pD2~2D2D* !,

k135
4

105
pD2

5D1D*

3
,

~k221k24!52
2

105
pD2

4D113D*

3
. ~23!

Equations~23! show that in the limitl→`, corresponding
to the nonscreened quadrupolar potential, all the elastic con-
stants vanish@10#, but this case is out of our analysis. When
l is a finite quantity, the limitRo→` may be performed. In
this situationk11(5k33) is a negative quantity. This means
that the ground state of the phase is not the undistorted state,
but the distorted one. In other words, the molecules interact-
ing via a screened quadrupolar potential do not tend to be
parallel to a common direction. These results have beeen
obtained by assuming an interaction volume limited by two
spherical surfaces of radiiRo (@Ri) andRi for the outer and
the inner surface, respectively. This is equivalent to assum-
ing the excluded volume of spherical shape, and the electri-
cal quadrupole responsible for the interaction localized in the
center. This approximation is widely used in the molecular
models proposed to evaluate the NLC elastic constants
@4,11–13#. Forl→`, it is possible to show that all the elas-
tic constants are zero also under the hypothesis that the in-
teraction volume is limited by two similar surfaces of ellip-
soidal shape, a quite reasonable assumption. However, this
case is not physically relevant because in an elastic theory
only intermolecular forces of negligible interaction range can
be considered. For finitel and an ellipsoidal shape of the
interaction volume the calculations are more complex. In this
case, the tensorsI and J appearing in Eq.~12! have to be
decomposed in terms of the unit tensor and ofD. It follows
that these tensors are no longer simply given by Eqs.~18!
and~19!, because now also terms of the typeDi jDlm and of
the typeDi jd lm have to be considered. However, the main
results do not change, as shown by a numerical analysis@14#.

In this paper we have considered molecules interacting
via a quadrupolar force, either in the presence or in the ab-
sence of screening effects. Expressions for the elastic energy
density and for the elastic constants connected to this inter-
molecular interaction have been obtained in the continuum
approximation. In the case of nonscreened quadrupolar po-
tential, all the elastic constants have been shown to be iden-
tically zero, whereas for finitel the splay and bend elastic
constants are found to be negative. In both cases the mol-
ecules do not tend to be oriented along a common direction,
as required by the nematic phase. As a consequence, even if
the NLC can be considered as quadrupolar ferroelectric ma-
terials, the quadrupole-quadrupole interaction does not favor
the nematic phase. These results have been obtained by sup-
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posing the interaction volume to be limited by two spherical
surfaces of inner radiusRi and outer radiusRo (@Ri).
However, the present conclusions hold also in the case of an
interaction volume having ellipsoidal shape.
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